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Three claims:
Three:
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Two:
FMM scales well on both manycore and GPU-based systems
One:
FMM is likely to be a main player in exascale



Hierarchical N-body algorithms: 

‣ O(N) solution of N-body problem
‣ Top 10 Algorithm of the 20th century



‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method Dongarra& Sullivan, IEEE Comput. Sci. Eng.,
Vol. 2(1):22–23 (2000)



N-body

‣ Problem:
“updates to a system where each element of the system rigorously 
depends on the state of every other element of the system.“

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods
http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods


Credit: Mark Stock



M31 Andromeda galaxy 
# stars: 1012





Fast N-body method

stars of the Andromeda galaxy 

Earth

O(N)
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Image: “Treecode and fast multipole method for N-body simulation with CUDA”,  Rio Yokota, Lorena A Barba, Ch. 9 in 
GPU Computing Gems Emerald Edition, Wen-mei Hwu, ed.; Morgan Kaufmann/Elsevier (2011) pp. 113–132.

http://www.elsevierdirect.com/product.jsp?isbn=9780123849885
http://www.elsevierdirect.com/product.jsp?isbn=9780123849885
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Image:  “A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A Barba. 
Int. J. High-perf. Comput. Accepted (2011) — To appear; preprint arXiv:1106.2176

http://arxiv.org/abs/1106.2176
http://arxiv.org/abs/1106.2176


๏ reduces operation count from O(N2) to O(N log N) or O(N)

Treecode & Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N ]

root

level 1

leaf level

Image:  “A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A Barba. 
Int. J. High-perf. Comput. Accepted (2011) — To appear; preprint arXiv:1106.2176

http://arxiv.org/abs/1106.2176
http://arxiv.org/abs/1106.2176
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Diversity of N-body problems

‣ integral formulation of elliptic PDE

�2u = f u =
�

�
Gfd�

atoms/ions in electrostatic 
or van der Waals forces

Numerical integration



๏ Poisson

๏ Helmholtz

๏ Poisson-Boltzmann

‣ fast mat-vec:

๏ accelerate iterations of Krylov solvers

๏ speeds-up Boundary Element Method (BEM) solvers

Applications of the FMM

�2u = f u =
�

�
Gfd�

⇥2u = �f

⇥2u + k2u = �f

⇤ · (�⇤u) + k2u = �f

Astrophysics
Electrostatics
Fluid mechanics

Acoustics
Electromagnetics

Geophysics
Biophysics



Background: 
a bit of history and current affairs

N-body prompted a series of special-purpose machines (GRAPE)
& has resulted in fourteen Gordon Bell awards overall



"The machine I built 
cost a few thousand bucks, 
was the size of a bread box, 
and ran at a third the speed of the fastest 
computer in the world at the time. 
And I didn't need anyone's permission to run it."
DAIICHIRO SUGIMOTO



GRAPE (GRAvity PipE)
1st gen — 1989, 240 Mflop/s ... 
4th gen — 1995, broke 1Tflop/s ... first Gordon Bell prize
seven GRAPE systems have received GB prizes

“Not only was GRAPE-4
the first teraflop supercomputer ever
built, but it confirmed Sugimoto's
theory that globular cluster cores
oscillate like a beating heart.”

The Star Machine, Gary Taubes, Discover 18, No. 6, 76-83 
(June 1997) 



14 Gordon Bell awards for N-body

‣ Performance 1992 — Warren & Salmon, 5 Gflop/s

๏ Price/performance 1997 — Warren et al., 18 Gflop/s / $1 M

๏ Price/performance 2009 — Hamada et al., 124 Mflop/s / $1

‣ Performance 2010 — Rahimian et al., 0.7 Pflop/s on Jaguar 

6200x 
cheaper

34x more than 
Moore’s law



‣ largest simulation — 90 billion unknowns

‣ scale — 256 GPUs of Lincoln cluster / 196,608 cores of Jaguar

‣ numerical engine: FMM (kernel-independent version, ‘kifmm’)

(a)                              (b)                               (c)                                              (d)                                      (e)                                        (f )         

Fig. 1: SUMMARY OF THE COMPUTATIONAL INFRASTRUCTURE FOR DIRECT NUMERICAL SIMULATION OF BLOOD FLOW. In the top row, we
depict a few snapshots from the flow of twenty RBCs that are immersed in plasma (which is not visualized). At every time step, a Stokes problem
must be solved in the exterior and interior of the RBCs. This is quite challenging, first, because of the complex geometries and second because
the Stokes equations require implicit solvers. We have developed computational tools for the efficient direct numerical simulation of blood
using a boundary integral formulation that addresses some of the numerical approximation issues. The main algorithmic components include:
(a) spectral RBC shape representations and quadratures for singular integrals on these shapes; (b) accurate modeling of the hydrodynamic
interactions between many-RBCs; (c) nonlinear solvers for the mechanics of RBC deformations; and (d,e) parallel, kernel-independent, tree-
based, fast summation methods. The advantage of boundary integral methods is that only the RBC boundary is discretized and no discretization
of the space between RBCs is necessary. This is crucial for reducing the number of degrees of freedom and eliminates the need for difficult-
to-parallelize 3D unstructured mesh generation. Our tools enable parallel and highly accurate simulations of microcirculation phenomena of
blood flow. We have achieved the direct numerical simulation of O(50) microliters of blood flow. ( (f) One can think of the volume of a single
blood drop as being roughly equivalent to one microliter.)

sacs with an inextensible, massless membrane that can sustain
bending and tension forces. The surrounding plasma is modeled
as a Stokesian fluid (we neglect inertial terms). There are several
challenges in simulating such a system:

• The evolution of the RBCs requires solving the Stokes
equations in the plasma—a very complex geometric region
that changes at every time step.

• Computing the bending and tension forces requires ac-
curate geometric description of the shape of the RBCs.
Furthermore, these forces introduce numerical stiffness.

To address these challenges associated with the direct numer-
ical simulation of blood flow, we use

• an integro-differential formulation in which we couple a
boundary integral formulation for the Stokes equations
(plasma) with the RBC’s membrane elasticity;

• a semi-implicit time-stepping scheme that removes the
stiffness due to interfacial forces;

• spherical harmonics representations for the shape and the
deformation of RBCs;

• the fast multipole method to accelerate the long-range
hydrodynamic interactions between cells and plasma; and

• distributed and shared memory parallelism, SIMD paral-
lelism (vectorization), and fine-grained multithreading via
GPGPU acceleration, to expose maximum concurrency.

MOBO employs Fourier and Legendre transforms, adaptive fast

multipole methods, Galerkin projections, multi-step time march-
ing, fast spherical harmonics rotations, spectral quadratures for
smooth and weakly singular integrals, preconditioned Krylov
linear solvers, and dense linear algebra.

Our overall formulation can be outlined as follows. We use
a spherical harmonics representation for the boundary of every
RBC. This choice is mathematically equivalent to tracking a
number of points on the surface of the RBC. In our simulations,
we typically track either 84 or 312 points. The motion of each
such point x is governed by

∂x

∂t
= v(x),

v(x) = vlocal(x) + vglobal(x) + vbackground(x).
(1)

Here, v is the velocity of the point, which we decompose
into three components: local, global, and background velocities.
Roughly speaking, the “local” velocity, vlocal , accounts for
the interactions between the specific point in the RBC under
consideration and all of the other points within the same RBC.
The “global” velocity, vglobal , accounts for all of the interactions
occurring across all of the RBCs in the simulation. The “back-
ground” velocity, vbackground , is the imposed flow field. This
work builds on our previous work on massively parallel tree-
data structures [30], [27], parallel and kernel independent fast
multipole methods [36], [17], [7], and fast solvers for particulate
flows [33], [25], [34].

2



‣ July 2011 — 3 trillion particles

๏ 11 minutes on 294,912 cores of JUGENE (BG/P), at Jülich 
Supercomputing Center, Germany
(already sorted data)

World-record FMM calculation

www.helmholtz.de/fzj-algorithmus

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-07-22algorithmus.html
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-07-22algorithmus.html


The algorithmic and hardware speed-ups 
multiply

N-body simulation on GPU 
hardware



Early application of GPUs

‣ 2007, Hamada & Iitaka — ‘CUNbody’

๏ distributed source particles among thread blocks, requiring reduction

‣ 2007, Nyland et al. — GPU Gems 3

๏ target particles were distributed, no reduction necessary

‣ 2008, Belleman et al. — ‘Kirin’ code

‣ 2009, Gaburov et al. — ‘Sapporo’ code



FMM on GPU — multiplying speed-ups

“Treecode and fast multipole method for N-body simulation with CUDA”, R Yokota & L A Barba, 
Ch. 9 in GPU Computing Gems Emerald Edition, Elsevier/Morgan Kaufman (2011)

Note:
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Advantage of N-body algorithms on GPUs

‣ quantify using the Roofline Model

๏ shows hardware barriers (‘ceiling’) on a computational kernel

‣ Components of performance:

Communication

Computation

Locality



Performance:  Computation

Metric:

๏ Gflop/s

๏ dp / sp

Peak achivable if:

๏ exploit FMA, etc.

๏ non-divergence (GPU)

‣ Intra-node parallelism:

๏ explicit in algorithm

๏ explicit in code

Communication

Computation

Locality

Source: ParLab, UC Berkeley



Performance:  Communication

Metric:

๏ GB/s

Peak achivable if 
optimizations are explicit

๏ prefetching

๏ allocation/usage

๏ stride streams

๏ coalescing on GPU

Communication

Computation

Locality

Source: ParLab, UC Berkeley



Performance:  Locality

“Computation is free”

๏ Maximize locality > minimize communication

๏ Comm lower bound

Communication

Computation

Locality

Source: ParLab, UC Berkeley

Hardware aids
Optimizations via 
software

๏ minimize capacity 
misses

๏ cache size ๏ blocking

๏ minimize conflict 
misses

๏ associativities ๏ padding



Roofline model

‣ Operational intensity = total flop / total byte  = Gflop/s / GB/s
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“Roofline: An Insightful Visual Performance Model for Multicore Architectures”, 
S. Williams, A. Waterman, D. Patterson. Communictions of the ACM, April 2009.



Advantage of N-body algorithms on GPUs

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

A
tt

ai
na

b
le

 fl
op

/s
 (

G
flo

p
/s

)

no SFU, no FMA

+SFU
+FMA

Fa
st

 N
-b

od
y 

(p
ar

tic
le

-p
ar

tic
le

)

Fa
st

 N
-b

od
y 

(c
el

l-c
el

l)

3-
D

 F
FT

St
en

ci
l

Sp
M

V

single-precision peak

Image: “Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, Rio Yokota, L A Barba. 
Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer Society, doi:10.1109/MCSE.2012.1.
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http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
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Scalability in many-GPUs 
& many-CPU systems

Our own progress so far:

1) 1 billion unknowns on 512 GPUs (Degima)
2) 32 billion on 32,768 processors of Kraken
3) 69 billion on 4096 GPUs of Tsubame 2.0

achieved 1 petaflop/s on turbulence simulation

http://www.bu.edu/exafmm/





meshcharges

Lysozyme molecule

discretized with 102,486 boundary elements



largest calculation:

๏ 10,648 molecules
๏ each discretized with 102,486 boundary elements
๏ more than 20 million atoms
๏ 1 billion unknowns

!  one minute per iteration on 512 GPUs of Degima

1000 Lysozyme 
molecules



Degima cluster
at Nagasaki Advanced Computing Center



Kraken

Cray XT5 system at NICS, Tennessee:
9,408 nodes with 12 CPU cores each,
16 GB memory

peak performance is 1.17 Petaflop/s.
# 11 in Top500 (Jun’11 & Nov’11)



Weak scaling on Kraken
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N=106, per process

parallel efficiency  
72% at 32,768 
processors

largest run:

32 Billion points

time to solution:

<40 s

Image:  “A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio Yokota, L A Barba. 
Int. J. High-perf. Comput. Accepted (2011) — To appear.



Tsubame 2.0

1408 nodes with 12 CPU cores each,
3 nvidia M2050 GPUs, 
54 GB of RAM.

Total of 4224 GPUs
peak performance 2.4 Petaflop/s.
# 5 in Top500 (Jun’11 & Nov’11)



Weak scaling on Tsubame

‣ 4 million points per process
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30s on 2048 GPUs

“Petascale turbulence simulation using a highly parallel fast multipole method”, Rio Yokota, L A Barba, 
Tetsu Narumi, Kenji Yasuoka. Comput. Phys. Commun., under revision (minor)
Preprint arXiv:1106.5273

http://arxiv.org/abs/1106.5273
http://arxiv.org/abs/1106.5273


FMM vs. FFT, weak scaling
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Petascale turbulence simulation

‣ using vortex method

‣ 4,0963 grid, 69 billion points

‣ 1 Pflop/s

‣ Energy spectrum well-matched

100 101 102

10ï�

100

k

E(
k)

spectral method
vortex method

“Petascale turbulence simulation using a highly 
parallel fast multipole method”, Rio Yokota, L A Barba, 
Tetsu Narumi, Kenji Yasuoka. 
Comput. Phys. Commun., under revision (minor)
Preprint arXiv:1106.5273

http://arxiv.org/abs/1106.5273
http://arxiv.org/abs/1106.5273


New hybrid Treecode/FMM 
with auto-tuning

ExaFMM code base:  www.bu.edu/exafmm

http://www.bu.edu/exafmm
http://www.bu.edu/exafmm


“Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, 
Rio Yokota, L A Barba. 
Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer 
Society, doi:10.1109/MCSE.2012.1.
Preprint arXiv:1108.5815

http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://arxiv.org/abs/1108.5815
http://arxiv.org/abs/1108.5815


Hybrid treecode/FMM — Purpose of auto-tuning

‣ Choices:

๏ Cartesian vs. spherical expansions

๏ rotation-based vs. plane wave-based translations

๏ cell-cell vs. cell-particle interactions for far field

๏ order of expansion (p) vs. MAC-based error control

‣ Depend on:

๏ required accuracy

๏ hardware

๏ implementation



Dual tree traversal

Image: “Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, Rio Yokota, L A Barba. 
Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer Society, doi:10.1109/MCSE.2012.1.

http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1


Timings on CPU

‣ Laplace kernel, potential+force, same accuracy, uniformly scattered 
particles in a cubic volume.
B — change value of N_crit
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Image: “Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, Rio Yokota, L A Barba. 
Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer Society, doi:10.1109/MCSE.2012.1.

http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1


So What?
Hybrid Treecode/FMM liberates the user from 
(i) deciding between treecode & FMM for their application
(ii) there is no need to tweak parameters, e.g., particles per cell



www.bu.edu/exafmm

http://www.bu.edu/exafmm
http://www.bu.edu/exafmm


to conclude

Hierarchical N-body algorithms are well-
suited for achieving exascale

FMM is a particularly favorable algorithm for the emerging 
heterogeneous, many-core architectural landscape.



Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local 

๏ work with sorted particle indices, access via a start-offset combination

‣ Temporal locality:

๏ queue GPU tasks before execution, buffer the input and output of data 
making memory access contiguous

➡ The FMM is not a locality-sensitive application

In the sense of: Bergman et al. (2008) “Exascale Computing Study”, DARPA IPTO



Global data comunications and synchronization

‣ Two most time-consuming in the FMM:  

๏ P2P — purely  local

๏ M2L — “hierarchical synchronization”



Recent feasibility studies

‣ Hypothetical exascale system:  

๏ 1024-core nodes ... each core clocks at 1 GHz ... total of 2^28 cores

‣ Analyze representative algorithms:

๏ determine problem size required to reach 1 exaflop/s

๏ find constraints in terms of system communication capacity



‣ 3 classes of algorithms:

๏ pure short-range MD

๏ tre-based cosmology

๏ unstructured-grid Finite Element solver



‣ feasibility region for MD 
and tree-based simulation 
is much less restricted

๏ viable bandwidth 
requirements 
~ 1–3 GB/s

Exascale feasibility



Scalable Hierarchical Algorithms 
can Reach Exascale

SHARE the code


